International Journal of Engineering, Science and Mathematics

Vol. 8 Issue 8, August 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

RELATIONS BETWEEN NEAR-RINGS AND RINGS

A. R.GOTMARE.

ABSTRACT

In this paper we investigate the following conditions.

- (i) $xy = (xy)^{n(x,y)}$
- (ii) $xy = (xy)^{n(x,y)}$
- (iii) $xy = y^{m(x,y)} x^{n(x,y)}$
- (iv) $xy = xy^{n(x,y)}x$
- (v) $xy = x^{n(x,y)}y^{m(x,y)}$ and finally prove that under appropriate additional hypothesis a d-g near ring must be commutative ring. The Theorem proved here is generalization of many recently established results.
- 1: **INTRODUCTION:** A near rings R is called periodic if for each x in R there exits distinct positive integer m,n such that $x^m = x^n$. A standing result of Her stein [7] states that a periodic ring is commutative if its nilpotent elements are central. In order to get the analogue of the result in near rings, Bell [4] established that if R is distributively generated (d-g) near rings with its nilpotent elements lying in the centre, then the set R of nilpotent elements of R forms an ideal, and R/N is periodic then R must be commutative. Now we consider the following properties and notice that a near ring satisfying any one of the following is necessarily periodic.
 - (I) For each $x, y \in R$ there exists a positive integer n = n(x, y) > 1 such that $xy = (xy)^n$
 - (II) For each $x, y \in R$ there exists a positive integer n = n(x, y) > 1 such that $xy = (yx)^n$
 - (III) For each $x, y \in R$ there exists a positive integer m = m(x, y), n = n(x, y) at least one of them is greater than 1 such that $xy = y^m x^n$

- (IV) For each $x, y \in R$ there exists an integer n = n(x, y) > 1 such that $xy = xy^n x$
- (V) For each $x, y \in R$ there exists an integer m = m(x, y) > 1, n = n(x, y) > 1 such that $xy = x^n y^m$

Recently commutativity of rings under most of the above mentioned conditions has been investigated

In this paper Ligh [9] has remarked that some conditions implying commutativity in rings might turn a class of near rings into rings. The purpose of this paper is to examine whether some of our conditions may imply that certain near rings are rings

Besides providing a simpler and more attractive proof of result due to Bell [5], our theorem generalizes the results proved in [1],[2],[10].

2: NOTATIONS AND PRELIMINARIES

Throughout the paper R is a left near ring with multiplicative centre Z, and N denotes the set of nilpotent elements of R. An element x of R is said to be distributive if (y+z)x=yx+zx and if all elements are distributive then the near is said to be distributive. A near ring R is distributively generated (d-g) if it contains a multiplicative subsemigroup of distributive elements which generates the additive group R^+ , and a near -ring R will be called strongly distributively generated (s-d-g) if it contains a set of distributive elements whose squares generates R^+ .

An ideal of a near ring R is defined to be normal subgroup I of R^+ such that

- (i) $RI \subseteq I$
- (ii) $(x+i)y xy \in I$ for all $x, y \in R$ and $i \in I$

In a (d-g) near ring (ii) may be replaced by (ii) $IR \subseteq I$. A near ring R is called zero symmetric if 0x = 0 for all $x \in R$ and zero commutative if xy = 0 $\Rightarrow yx = 0$ for all $x, y \in R$.

3: RESULTS

We begin with the following known results which will be used extensively. He proofs of

- (I) And (II) are straightforward where as those (III), (IV) and (V) Can be found in [6].
- (I) If R is a zero –commutative near –ring, then $xy = 0 \implies xry = 0$ for all $r \in R$.
- (II) A d g near –ring is always zero symmetric.
- (III) A d-g near-ring R is distributive if and only if R^2 is additively commutative.
- (IV) A d-g near ring with unity 1 is a ring if R is distributive or R^+ is commutative.
- (V) If N is s two sided ideal in a d-g near ring R, then the elements of the quotient group R^+-N form a d-g near ring, which will be represented by R/N.

We pause to observe that a d-g near ring R satisfying any of our conditions (1) –(4) is necessarily zero commutative. For example, R satisfy (1) and for a pair of elements $x, y \in R$, xy = 0. Hence by virtue of (II),

 $yx = (yx)^{n_1 = n(y,x)} = yxyxyx...yx = y(xy)^{n_1-1}x = (y0)x = 0$ Now we prove the following Lemma

LEMMA: Let R be a near ring d-g be satisfying one of the following conditions, Then $N \subseteq Z$.

Proof:

- (1) Since R is a zero commutative, it follows that if $a \in N$ and x is an arbitrary element of R then ax is nil potent. Thus the nil potent element of R annihilate R on both sides. Hence a is central
- (2) As same of the above
- (3) Let $a \in N$ and $x \in R$, then there exists integers $m_1 = m(a, x) \ge 1$, and

such

 $n_1 = n(a, x) > 1$

and (5)

 $m_2=m(x^{m_1},a^{n_1})\geq 1$, and $n_2=n(x^{m_1},a^{n_1})$ >1 such that $x^{m_1}a^{n_1}=a^{n_1n_2}x^{m_1m_2}$, and hence $ax=a^{n_1n_2}x^{m_1m_2}$. It is clear that for arbitrary t we have an integers $m_1,m_2,...m$ ≥ 1 and $n_1,n_2,...n$ $_t>1$ such that $ax=a^{n_1n_2}...x^{m_1m_2}$ his implies ax=0 and hence a is central. Similarly we can prove (4)

that

 $ax = x^{m_1}a^{n_1}$

. Now

choose

Theorem: Let R be a d-g near-ring satisfying any one of the above (1) –(5) conditions, then R is commutative.

Corollary 1: Let R be a d-g near-ring satisfying any one condition (1)-(5). If $R^2=R$, then R is commutative ring.

Proof: In view of Theorem a d-g near ring with unity satisfying any one of the conditions (1)- (5) is commutative. Thus for any $x,y,z\in R$, we have

(y+z)x = x(y+z) = xy + xz = yx + zx. This implies that R is distributive and hence by (III) R^2 is additively commutative. Now $R^2 = R$ means that R is also additively commutative. Hence R is commutative.

Corollary 2: Let R be a d-g near ring with unity satisfying any one of the conditions (1)-(5) . Then R is a commutative ring .

Proof : Applications of (IV) together with our theorem gives the result.

Corollary 3: Let R be a d-g near ring satisfying any one of the conditions (1)- (5). Then R is commutative.

Proof: By Theorem, R is a commutative s-d-g near ring in which every elements is distributive and by (III) R^2 is additive. Hence the additive group R^+ of the s-d-g near ring is also commutative and R is a commutative ring.

REFERENCE:

- [1] H.E.Bell , A commutativity conditions for rings Canada . J. Math. (1976)
- [2] A. Frohlich, Distributively generated near rings London Math Soc.(1975)
- [3] I.N. Herstein, A note on rings with central nil potent elements. Proc. Amrer. Ath Soc.(1969)
- [4] M.O. Searcoid and D. MacHaale , Two elementary generalizations for Boolean rings .Amer. Math (1986)